EROSION AND SEDIMENTATION CONTROL REPORT

MAM14_U1 PIPELINE AND WATERLINE BELL AND WASHINGTON TOWNSHIPS WESTMORELAND COUNTY, PENNSYLVANIA

Prepared For:

CNX MIDSTREAM OPERATING COMPANY LLC CANONSBURG, PENNSYLVANIA

Prepared By:

CIVIL & ENVIRONMENTAL CONSULTANTS, INC. MONROEVILLE, PENNSYLVANIA

CEC Project 332-793

December 2023

Certification of Plan Preparer:

I do hereby certify to the best of my knowledge, information, and belief, that the Erosion and Sediment Control Plan and the Site Restoration Plan are true and correct, represent actual field conditions and are in accordance with the 25 Pa. Code Chapters 78 and 102 of the Department's rules and regulations. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Civil & Environmental Consultants, Inc.

TABLE OF CONTENTS

Page

1.0	Introduction	1
2.0	Soils Information	3
3.0	Past, Present, and Proposed Land Uses	6
4.0	Project Site Runoff Discussion	7
5.0	Receiving Waters	8
6.0	Erosion Control and Stormwater Best Management Practices	9
7.0	Best Management Practice Installation Sequence	.13
8.0	Material Recycling and Disposal	.18
9.0	Naturally Occurring Geologic Formations, Mining, and Soil Conditions	.19
10.0	Potential Thermal Impacts	.20
11.0	Riparian Forest Buffers	.21
12.0	Anti-degradation Analysis	.22
13.0	Off-Site Discharge Analysis	.24
14.0	References	.25

APPENDICES

- Appendix A Supporting Calculations
- Appendix B Site Location Map
- Appendix C USDA Custom Soil Resource Report

1.0 INTRODUCTION

On behalf of CNX Midstream Operating Company LLC (CNXM), Civil & Environmental Consultants, Inc. (CEC) presents this Erosion and Sedimentation Control (E&S) Report for the MAM14_U1 Pipeline and Waterline project located in Bell and Washington Townships, Westmoreland County, Pennsylvania. The E&S Report was prepared specifically to address the requirements of the E&S Permit for Discharges of Stormwater Associated with Construction Activities application. The E&S Report is part of the Individual E&S Permit Package and accompanies, and is consistent with, the application form and the Site Restoration (SR) Report.

<u>Project Description and Location</u>: CNXM proposes to construct approximately 9,700 feet of two (2) 12-inch steel gas pipelines and approximately 9,740 feet of one (1) 20-inch high density polyethylene (HDPE) waterline within a 75-foot to 100-foot wide limit of disturbance (LOD). The proposed project begins in Washington Township, Westmoreland County approximately 0.3 miles north of Paul Riggle & Sons Trucking off Marco Road at the future CNX Gas Company LLC (CNX) MAM14 well site. One (1) 20-inch HDPE waterline and two (2) 12-inch steel gas pipelines will traverse in an eastern direction for approximately 1.85 miles and ending approximately 1300 feet in a northwestern direction from the intersection of Coal Hollow Road and State Route (S.R.) 819 in Bell Township, Westmoreland County, Pennsylvania at the CNX MAM15 compressor site. The pipelines will cross Millstone Road (Twp. 804).

Approximately five (5) existing access roads are proposed for construction access to the pipeline portion of this project. Temporary construction workspaces as well as the pipeline right-of-way (ROW) will generally be restored to existing conditions or meadow-good condition.

The following North American Datum 1983 coordinates may be used to locate the approximate beginning and end of the pipeline:

Proposed Beginning of Gas Pipeline and Waterline:	40.536809°N, 79.571682°W
Proposed End of Gas Pipeline:	40.535188°N, 79.546342°W
Proposed End of Waterline:	40.534883°N, 79.547888°W

Wetlands and other potential natural resources conservation areas were considered during the planning stage of this project. Wetlands and streams were delineated in the vicinity of the project area by CEC on various days from August thru November 2023. Consideration was given during the preparation of the E&S Plans to minimize impacts to these sensitive areas. Six (6) wetlands and five (5) streams will be temporarily impacted and by earth disturbance activities as a result of this project. A copy of the Wetland Delineation Report prepared by CEC is included with the Individual E&S Permit package.

Lastly, the proposed ground condition will generally be restored to meadow-good condition for pipeline ROW. Existing access roads for pipeline construction located within the LOD will be maintained during construction and restored to existing widths and cover condition following construction. Temporary workspaces will be restored to approximate existing contour and meadow-good condition following construction activities. Calculations for proposed E&S BMPs are provided in Appendix A.

2.0 SOILS INFORMATION

The Soils Map, which is provided in the Soils Report in Appendix C, illustrates the soil types and their respective boundaries. The following table presents the soils and their respective characteristics and limitations that will be encountered during construction of this project. The soils information in the following table was obtained from the United States Department of Agriculture (USDA) Custom Soil Resource Report.

SYMBOL	SOIL TYPE	SLOPE (%)
BeD	Bethesda very channery silt loam	8-25
BeF	Bethesda very channery silt loam	25-75
ErB	Ernest silt loam	3-8
ErC	Ernest silt loam	8-15
GcB	Gilpin channery silt loam	3-8
GcC	Gilpin channery silt loam	8-15
GcD	Gilpin channery silt loam	15-25
Lo	Lobdell silt loam	0-3
ShF	Shelocta-Gilpin channery silt loam	25-75
SxF	Shelocta-Gilpin channery silt loam	25-75
WrB	Wharton silt loam	3-8
WrC	Wharton silt loam	8-15

MAP SYMBOL	SOIL NAME	CORROSIVE TO CONCRETE OR STEEL	DEPTH TO SATURATED ZONE	DEPTH TO HARD BEDROCK	SLOPE	FLOODING	FROST ACTION	LOW STRENGTH	UNSTABLE FILL	CUT BANKS CAVE	POTENTIALLY HYDRIC	SHRINK/SWELL	PIPING
BeD	Bethesda very channery silt loam	C/S	Х		Х		Х	Х	Х	Х			
BeF	Bethesda very channery silt loam	C/S	X		X		X	X	X	Х			
ErB	Ernest silt loam	C/S	X		Х		X	X		Х	X		Х
ErC	Ernest silt loam	C/S	Х		Х		X	X		Х	Х		Х

MAP SYMBOL	SOIL NAME	CORROSIVE TO CONCRETE OR STEEL	DEPTH TO SATURATED ZONE	DEPTH TO HARD BEDROCK	SLOPE	FLOODING	FROST ACTION	LOW STRENGTH	UNSTABLE FILL	CUT BANKS CAVE	POTENTIALLY HYDRIC	SHRINK/SWELL	PIPING
	Gilpin channery silt												
GcB	loam	C/S		Х	Х		Х	Х		Х	Х		
GcC	Gilpin channery silt loam	C/S		Х	Х		Х	Х		Х	Х		
GcD	Gilpin channery silt loam	C/S		Х	Х		X	X		Х	Х		
ItB	Itmann extremely channery loam	C/S						X		Х			
Lo	Lobdell silt loam	S	Х	Х			Х	Х	Х		X	Х	
ShF	Shelocta-Gilpin channery silt loam	C/S			Х	Х		Х	Х		Х		
SxF	Shelocta-Gilpin channery silt loam	C/S			X	Χ		Χ	Χ		X		
WrB	Wharton silt loam	C/S	X	X		Χ		Χ	Χ		X	Х	
WrC	Wharton silt loam	C/S	Х	Х		Х		Х	Х		Х	X	

Soil Limitations and Resolutions

LIMITATION RESOLUTION								
Corrosion to	Concrete and steel construction materials shall be coated with							
Concrete/Steel	corrosion resistant material.							
Depth to Saturated Zone	Pumps and pumped water filter bags shall be utilized if groundwater							
Depth to Saturated Zolle	is encountered							
	Excavations shall be as shallow as practicable. Site earthwork							
Depth to Hard Bedrock	operations shall be performed in accordance with the geotechnical							
	recommendations by CEC.							
Slope	The site shall be regraded to suitable slopes for desired function.							
Flooding	No floodplains will be disturbed during the construction of this							
rioodilig	project.							
Frost Action	Ensure proper protection from damage, especially to roadways.							
Low Strongth	Proper construction techniques shall be employed during earthmoving							
Low Strength	activities in order to avoid slope failures.							

LIMITATION	RESOLUTION					
	A project specific geohazard mitigation report was prepared to address					
Unstable Fill	steep slope and unstable fill construction. Refer the geohazard					
	mitigation report for construction recommendations.					
	Trenches and cut slopes shall be excavated with appropriate layback					
	banks to prevent cave-ins. Stockpiles shall be located at a sufficient					
Cut Banks Cave	distance away from the trenches and cut slopes. Applicable					
	Occupational Safety and Health Administration (OSHA) standards					
	and regulations should be implemented.					
	A wetland study was performed by CEC. Streams and wetlands are					
Hydric/Hydric Inclusions	shown on the E&S Plans and in the Wetland Delineation Report					
	included in the E&S Permit application.					
Shrink/Swall	Replace pre-existing expansive soils with a non-expansive soil or					
Shi lik/Swell	maintain constant soil moisture.					
	Trench plugs shall be utilized in accordance with the Pennsylvania					
Dining	Department of Environmental Protection (PADEP) standard detail to					
Fiping	minimize water movement via pipe bedding on slopes. Water shall be					
	diverted away from open trenches.					

3.0 PAST, PRESENT, AND PROPOSED LAND USES

The past and present land uses of this project site were determined using aerial mapping. Land uses include woodland, meadow, natural gas infrastructure, farmland and utility and road ROW. The existing topography consists of rolling hills with elevations ranging from Elevation (El.) 940 to El. 1280 based on a combination of conventional survey methods performed by CEC and information from the PAMap program LiDAR Data (2-foot internal) dated 2020. The proposed land use will generally consist of utility ROW and the restored pipeline ROW.

4.0 PROJECT SITE RUNOFF DISCUSSION

E&S BMPs are proposed to control sediment-laden runoff from the project area. The maximum drainage area to each BMP was analyzed as part of the BMP design, which was then used to determine the required capacity and each BMP was designed accordingly. Disturbed areas associated with the project will be restored to existing condition or meadow-good condition.

5.0 **RECEIVING WATERS**

Stormwater runoff from this project will drain to the receiving waters listed in the following table. Receiving waters, as with all streams in Pennsylvania, are classified based upon their designated and existing uses and water quality criteria. Designated uses for waters of the Commonwealth are found in 25 PA Code §93.9a-z at: <u>http://www.pacode.com/secure/data/025/chapter93/chap93toc.html</u>. Existing uses of waters of the Commonwealth are found at the PADEP website: <u>http://www.depgis.state.pa.us/wave/</u>. The receiving waters for this project and designated/existing uses are listed below.

STREAM NAME	WATERSHED	CHAPTER 93 DESIGNATION	SILTATION IMPAIRED
UNTs to Beaver Run	Kiskiminetas River	TSF	Yes
Beaver Run	Kiskiminetas River	TSF	Yes
UNTs to Trib 42938 to Beaver Run	Kiskiminetas River	TSF	Yes
Trib 42938 to Beaver Run	Kiskiminetas River	TSF	Yes
Trib 42945 to Beaver Run	Kiskiminetas River	TSF	Yes

6.0 EROSION CONTROL AND STORMWATER BEST MANAGEMENT PRACTICES

The BMPs listed in this plan shall be installed and maintained in accordance with the *Erosion and Sediment Pollution Control Manual No. 363-2134-008*, as amended and updated, and the *Oil and Gas Operator's Manual No. 550-0300-001*, as amended and updated. The BMPs contained in this plan shall be installed as shown on the approved E&S Plans prior to earth disturbance (including clearing and grubbing) within the tributary area of each BMP. Each BMP shall be kept functional until all earth disturbing activities within the tributary area are completed and a uniform 70 percent perennial vegetated cover is achieved over the entire disturbed area or other suitable permanent erosion protection has been installed.

E&S BMPs shall be installed and maintained as specified in this plan. The permittee shall keep a written record documenting each inspection and BMP repair or replacement and maintenance activities.

The following standard BMPs have been provided to fulfill the requirements of this plan. Additional BMPs are listed in the *Erosion and Sedimentation Pollution Control Manual* as well as the *Oil and Gas Operator's Manual*. BMP construction details are provided on the E&S Plans. Supporting calculations for each BMP, if applicable, are provided in Appendix A.

<u>Rock Construction Entrance (150-foot Alternate)</u>: Rock Construction entrances within siltation impaired watersheds, where street sweeping is impractical (e.g., gravel roads), the entrances shall be extended an additional 100 feet (150 feet total) with the first 50 feet of AASHTO No. 1 rock being reduced to 4 inches and topped with 4 inches of rolled and compacted PennDOT 2RC aggregate and a 20-foot wide minimum width. The remaining 100 feet of the entrance shall be 8-inch thick AASHTO No. 1 rock. Refer to the Rock Construction Entrance detail specified in the E&S Plans. Rock construction entrance thicknesses shall be constantly maintained to the specified dimensions by adding rock. A stockpile shall be maintained on-site for this purpose. Sediment deposited on paved roadways shall be removed and returned to the construction site immediately. If excessive amounts of sediment are being deposited on the roadway, extend the length of the

rock construction entrance by 50-foot increments until the condition is alleviated or install a wash rack. Washing the roadway or sweeping the deposits into roadway ditches, sewers, culverts, or other drainage courses is not acceptable.

<u>Multi-Layer Geotextile Filter Fence (Silt Fence)</u>: Silt Fence shall be installed on or parallel to the contour at the edge of disturbed areas. Both ends of each fence section must be extended upslope at 45 degrees to the main silt fence alignment. Silt Fence shall be installed in accordance with the manufacturer's specifications. Traffic shall not be permitted to cross silt fence. Accumulated sediment shall be removed when it reaches one-half (1/2) of the aboveground height of the fence. Refer to the detail specified in the E&S Plans for material specifications and additional notes. Upon stabilization of the area tributary to the fence, stakes and silt fence shall be removed. Silt Fence shall be inspected at least weekly and after each runoff event. Damaged fence sections shall be repaired according to manufacturer's specification or replaced within 24 hours.

Waterbar: Waterbars were designed in accordance with the recommended spacing and will be placed in the pipeline ROW as indicated on the drawings. Waterbars are shown on the E&S Plans as general guidance as to the approximate location of installation. The waterbars shall be sloped at a maximum of 2 percent downgrade. Waterbars shall be oriented to discharge runoff downslope of the ROW to prevent it from re-entering the ROW. Sumps may be installed at the waterbar outlets based on conditions encountered during construction, as necessary, to minimize accelerated erosion from the site. Installation of waterbar sumps should be limited to warm season construction (April through October). Accumulated sediment shall be removed when it reaches three quarters (3/4) of the waterbar sump depth. Waterbars located within a special protection watershed or within 150 feet of an existing stream, wetland, or stormwater drainage feature shall be installed with 12-inch compost filter socks at the outlet points. Temporary waterbars shall be removed once the tributary area is stabilized. Waterbars and waterbar sumps shall be inspected weekly and after each runoff event. Damaged or eroded waterbars shall be restored to original dimensions immediately upon inspection. During final restoration of the pipeline ROW, waterbar sumps shall be removed by backfilling with suitable fill material. Maintenance of waterbars shall be provided until ROW has achieved permanent stabilization.

<u>Trench Plugs</u>: A trench plug is a flow obstruction, constructed from clay, bentonite, or concrete fill sack, that is placed in a trench to prevent flow along the waterline either prior to or after backfilling of the trench. Impervious trench plugs are required for all stream, river, wetland, or other surface water crossings regardless of trench slope. Trench plugs not located at surface water crossings may be fitted with a controlled drainage outlet, if deemed necessary for geohazard prevention and mitigation. The approximate locations of trench plug installation are shown on the E&S drawings.

<u>Slope Stabilization</u>: Slope stabilization shall be installed in disturbed areas for all slopes 3 horizontal to 1 vertical (3H:1V) or steeper, within 50 feet of a surface water, or where soil conditions indicate blanketing is needed to achieve adequate vegetative cover. Refer to the detail specified in the E&S Plans for anchoring and stapling requirements. Manufacturer's recommendations should be followed for installation and maintenance requirements.

<u>Pumped Water Filter Bag</u>: Filter bags shall be made from nonwoven geotextile material sewn with high strength, double stitched "J" type seams and shall trap particles larger than 150 microns. Pumping rates shall be no greater than 750 gallons per minute or one-half (1/2) the maximum specified by the manufacturer, whichever is less. Filter bags shall be replaced when they become one-half (1/2) full. A suitable means of accessing the bag with machinery required for disposal purposes must be provided. Spare bags shall be kept available for replacement of those that have failed or are filled. Bags shall be located in well-vegetated (grassy) areas and discharge onto stable, erosion resistant areas. Where this is not possible, a geotextile flow path shall be provided. Bags shall not be placed on slopes greater than 5 percent. Bags shall be placed on straps to facilitate removal unless bags come with lifting straps already attached.

<u>Wood Mats</u>: Wood mats (also called timber mats) shall be installed in the locations shown on the plans and in accordance with the "Wood Mat for Wetland Crossing" standard detail provided. A layer of geotextile shall be placed between the wood mats and wetland. Inspect wood mats routinely to provide proper protection and stability. Replace geotextile in any locations where tears are found.

<u>Temporary Stabilization</u>: Temporary stabilization will be applied upon temporary cessation of earth disturbance activity or any stage of an activity exceeding four (4) days; the site shall immediately be seeded, mulched, or otherwise protected from accelerated erosion pending future earth disturbance activities. For an earth disturbance activity or any stage of an activity to be considered temporarily stabilized, the disturbed areas shall be covered with one (1) of the following: a minimum uniform coverage of mulch and seed with a density capable of resisting accelerated erosion or an acceptable BMP that temporarily minimizes accelerated erosion. Temporary stabilization will not occur on active vehicular travel ways within the project LOD. The on-site environmental inspector will log daily activity within the project LOD and notify CNXM of areas requiring temporary stabilization [i.e., areas where work has ceased for at least four (4) days]. These areas will be temporarily stabilized in accordance with the plan drawings and specifications.

<u>Permanent Stabilization</u>: Permanent stabilization shall occur at the conclusion of the construction phase. Upon completion or temporary cessation of the earth disturbance activity in a special protection watershed, that portion of the project site tributary to the special protection waters must be immediately stabilized. Disturbed areas shall be seeded and mulched in accordance with the specification presented herein. Soil amendments shall be applied before seeding. It is recommended that soil tests be completed by a qualified professional to determine proper soil amendment application rates for the proposed site conditions and seed mixtures.

7.0 BEST MANAGEMENT PRACTICE INSTALLATION SEQUENCE

The MAM14_U1 Pipeline project will consist of the construction and maintenance of two (2) 12-inch steel gas lines, one (1) 20-inch HDPE Waterline, and E&S BMPs. E&S BMPs shall be installed in accordance with the approved E&S Plan and the PADEP *Erosion and Sediment Pollution Control Program Manual* dated March 2012. Refer to the E&S Plans for the location of the proposed work and the associated BMPs.

A generalized construction sequence is provided below. The construction sequence is intended to provide a general course of action in order to conform to the applicable regulatory agency requirements for temporary and permanent soil E&S. Necessary parts for proper and complete execution of work pertaining to this plan, whether specifically mentioned or not, are to be performed by the contractor. It is not intended the drawings and this report show every detailed piece of material or equipment. The contractor shall comply with all requirements listed in this section. The contractor may be required to alter controls based on effectiveness of controls or differing conditions encountered in the field.

A pre-construction meeting is required prior to the start of any construction activity. PADEP must be invited to this meeting at least seven (7) days in advance. Also, at least three (3) days before starting earth disturbance activities, contractors involved in those activities shall notify the Pennsylvania One-Call System Incorporated at 1-800-242-1776 to locate buried utilities.

Pipeline construction is expected to be performed in a segmental fashion to progress along the project route. As such, different segments of the pipeline may be at different stages in the construction sequence during the life of the project. For each segment of pipeline, the contractor should generally follow steps below and repeat for each new segment of pipeline construction. Upon completion of an earth disturbance activity or any stage or phase of an activity, the site shall be immediately stabilized or otherwise protected from accelerated erosion and discharge of sediment.

All BMPs shall be installed in accordance with the E&S Plan standard details, specifications defined in the PADEP E&S BMP Manual or Alternative BMP list and, where applicable, the product manufacturer's recommendations. A copy of the approved drawings (stamped, signed, and dated) must be available at the project site at all times.

- Layout the limits of the project, including survey staking the LOD, establish benchmarks, reference points, and sensitive areas, which are to be preserved or avoided during construction. Install orange construction safety fence in the locations identified on the E&S Plans to protect sensitive areas.
- 2. Locate access points, including construction entrances and staging areas. Install sediment barriers as shown on the E&S Plans downslope of these areas.
- 3. Install rock construction entrances at the locations shown on the E&S Plans and in accordance with the standard details. Rock construction entrance locations may be adjusted within the LOD at the locations shown on the E&S Plans to account for prevailing site conditions. Rock construction entrance maintenance stockpiles may be relocated within the LOD from locations shown on the E&S Plans to allow for efficient flow of construction traffic.
- 4. Minimize total area of disturbance. Remove trees and brush to effectively install perimeter controls. Level side cuts to grant access for vehicles and workers to safely perform the installation of sediment barriers as shown on the E&S Plans. Installation, BMP sizing, and spacing must conform to the details and specifications provided on the E&S Plans.
- 5. Clear and grub only within the LOD defined on the E&S Plans. No grubbing or earth disturbance shall occur until BMPs are installed downslope of tributary areas.
- 6. During clearing along the ROW, install temporary equipment crossings at wetlands and streams as shown on the E&S Plans. Crossings must be installed in accordance with the

requirements of the approved Chapter 105 General Permit documents associated with each individual crossing location.

Pipeline Construction

- 7. Begin pipeline construction. Segregation of topsoil and subsoil shall take place throughout the ROW. Soil stockpile locations shall be adjusted, as necessary, during construction to allow for efficient flow of construction or to accommodate prevailing site conditions. The ROW shall be used as the work area for excavation, equipment movement, and material stockpiles. Equipment, stockpiles, and other materials must remain upslope of BMPs during construction activity.
- 8. For the duration of construction, pooling water encountered within the construction area shall be dewatered by using pumps, hoses, and pumped water filter bags that discharge into well vegetated areas.
- 9. Coal or other potential acid producing rock (APR) material shall be handled in accordance with the approved APR Management Plan.
- 10. Apply soil supplements and temporarily seed and mulch topsoil stockpiles on disturbed areas that will receive no construction activity within four (4) days.
- 11. Proceed with gas pipeline and waterline installation.
- 12. Install trench plugs and geological hazard mitigation plan (GHMP) BMPs at the locations identified on the E&S Plans. GHMP BMP locations may be adjusted, relocated, or added per prevailing site conditions and at the discretion of a qualified professional under direct supervision of the appropriate licensed professional.
- 13. Upon completion of pipeline installation, backfill the trench with suitable material.

Civil & Environmental Consultants, Inc.

Right-of-Way Restoration

- 14. Apply soil supplements and permanent seed and mulch to disturbed areas that have achieved final grade and will no longer be subjected to construction activity. For slope areas 3H:1V and steeper, the area shall be vertically tracked and erosion control blankets shall be installed once soil supplements, seed, and mulch have been applied. For slope areas 3H:1V and steeper, a steep slope seed mixture shall be used.
- 15. Upon completion of construction activities, the site shall be restored in accordance with the PCSM/SR Plan. During restoration of the ROW, the contractor shall implement decompactive procedures (ripping, discing, tilling, etc.) through the upper 12 to 18 inches of subsoil to promote root growth. Topsoil will be respread above the decompacted soils. Apply soil supplements and permanent seed and mulch to all remaining disturbed areas. Existing third party access roads crossed by the pipeline shall be restored to their pre-construction condition.
- 16. Reseed, as necessary, any areas that become disturbed or where vegetation has not been established.
- 17. Remove all temporary BMPs once a uniform 70 percent perennial vegetative cover has established on all previously disturbed areas.
- 18. If future maintenance activities along the ROW are required, CNXM and the contractor shall monitor equipment leaving the ROW to ensure sediment is not tracked onto the roadway. CNXM shall obtain additional permits, if necessary, depending on the scope of the maintenance activities. Sediment deposited onto the roadway shall be removed and returned to the construction site by the end of each work day.

Minor modifications to the E&S and SR Plans shall be noted on the plan that is available at the site and initialed by the appropriate PADEP staff. Minor changes to the plan may include adjustments to BMPs and locations within the permitted boundary to improve environmental

performance, prevent potential pollution, change in ownership or address, typographical errors, on-site field adjustments such as the addition or deletion of BMPs, or alteration of earth disturbance activities to address unforeseen circumstances. Major modifications to the approved E&S Plans involving new or additional earth disturbance activities other than those described as minor modifications above and/or the addition of a discharge will require prior approval by the reviewing entity and may require the submittal of a new plan.

8.0 MATERIAL RECYCLING AND DISPOSAL

Practices and procedures must be in place to ensure the proper handling, storage, control, disposal, and recycling of garbage, fuels, or any substance which may be harmful to human, aquatic, or fish life. The listed items shall be prevented from entering springs, streams, ponds, lakes, wetlands, or a water course or water body. Oils, fuels, lubricants, and coolants shall be placed in suitable containers and disposed of properly. All synthetic erosion control features (e.g., silt fencing, nettings, mats), which are intended for temporary use during construction, shall be completely removed and properly disposed of after their purpose has been served. Orange construction fence, and similar, shall be removed and properly disposed of immediately upon completion of its intended purpose. Only natural fiber materials which will "completely breakdown" within a reasonable timeframe, as to be indistinguishable from the natural environment, may be abandoned in place. Trash and garbage shall be collected and disposed of properly.

9.0 NATURALLY OCCURRING GEOLOGIC FORMATIONS, MINING, AND SOIL CONDITIONS

According to publicly available mapping from the Pennsylvania Department of Conservation and Natural Resources (PADCNR), the stratigraphic rock units present at or near the surface along the pipeline alignment are generally Pennsylvanian aged and belongs primarily to cyclic sequences of the Allegheny and Glenshaw Formations.

The Glenshaw Formation generally consists of cyclic sequences of shale, sandstone, red beds, as well as thin limestone and coal seams. The base of the Glenshaw Formation (and top of Allegheny Formation) is generally defined by the Upper Freeport Coal seam. The Allegheny Formation generally consists of cyclic sequences of sandstone, shale, limestone, clay, and coal.

USGS geologic descriptions for these units were reviewed to assess the potential for karst formations as well as radioactive and arsenic bearing potential.

The USDA soil survey indicates that the site soils primarily consist of the Bethasda, Ernest, Gilpin, Itmann, Lobdell, Shelocta-Gilpin, and Whatron silt loam series of soils.

Based on the above, CEC has proposed site specific geologic hazard mitigation BMPs to minimize the risks related with geologic formations, landslides, or soil conditions, which may have the potential to cause pollution during or after earth disturbing activities. Refer to CEC's Naturally Occurring Geologic Condition Assessment Report and APR Management Plan for additional information. Should issues related to geologic formations, landslides, or slope stability be encountered during construction, CEC should be notified immediately to provide recommendations to minimize or avoid potential problems.

10.0 POTENTIAL THERMAL IMPACTS

The project will not have significant changes in land cover; therefore, the principal source of thermal impacts is related to proposed temporary vegetation disturbance. Thermal impacts from the temporary disturbance of the pipeline ROW will be minimized by allowing runoff to flow over vegetated surfaces prior to entering any surface waters. Additionally, all disturbed areas will be restored as soon as practicable to existing condition or meadow-good condition to reduce the effects of thermal impacts on the surface waters. Temporary access roads and workspace areas will be restored to existing condition or meadow-good condition as soon as practicable. Likewise, vegetation removal will be limited to the extent practicable. Further, maintaining existing tree canopies and riparian buffers will limit ground surface exposure to direct sunlight.

11.0 RIPARIAN FOREST BUFFERS

The PADEP requires a 150-foot riparian forest buffer for projects located within a High Quality (HQ) or special protection watershed. The site is located within the Kiskiminetas River, watershed which is not HQ; therefore, the 150-foot riparian buffer requirement is not applicable to this project.

12.0 ANTI-DEGRADATION ANALYSIS

Projects that are located in special protection watersheds that have a designated or existing use of HQ or exceptional value (EV), Wild Trout Streams, or non-special protection watersheds impaired for sediment must demonstrate that construction and post construction discharges will not degrade the physical, chemical, or biological characteristics of the surface waters. The project drains to receiving streams within the Kiskiminetas River watershed which are designated as siltation impaired, as shown in Section 5.0 of this report. Thus, an anti-degradation analysis required for this project.

Anti-degradation Best Available Combination of Technologies (ABACT) approved BMPs were utilized within the Kiskiminetas River watershed to prevent degrading discharge. The following is a list of each of the "Non-discharge" BMPs and an explanation as to why/how each of them were or were not used:

<u>Limited Disturbed Area</u> – The amount of land disturbed within the LODs will be minimized to the extent practicable at all times. Land will only be disturbed at the rate necessary to progress installation of the proposed pipelines, waterline, and associated facilities.

<u>Immediate Stabilization</u> – All disturbed areas will be restored to meadow–good condition, agricultural use, or a stable gravel cover as soon as practicable following construction.

<u>Other - Revegetation</u> – All disturbed areas will be restored to meadow-good condition as soon as practicable following construction, unless otherwise noted on the plan drawings.

ABACTs are proposed for this project and include the following:

• Preparedness, Prevention, and Contingency (PPC) Plan – A PPC Plan will be available on site to identify applicable pollution prevention practices while the site is in operation; and

• ABACT BMPs – Silt fence will be utilized upslope of special protection waters during construction to minimize the transport of sediment pollution to the special protection waters. Rock construction entrances upslope of special protection waters will be extended and additional 50 feet (100 feet total) where street sweeping will be conducted or extended to a total length of 150 feet with 50 feet of rolled PennDOT 2C at the entrance, where street sweeping will not be conducted (i.e., along an existing access road). Waterbars and pumped water filter bags within the special protection watersheds will include a compost filter sock at the discharge outlets. Disturbed areas will be immediately stabilized with vegetative stabilization, following reaching final grades.

Based on the above summary, ABACT BMPs have been utilized to satisfy the requirements of this antidegradation analysis.

13.0 OFF-SITE DISCHARGE ANALYSIS

The PADEP requires that proposed off-site discharges of stormwater from site restoration areas and PCSM BMPs to areas other than surface waters must demonstrate that the discharge will not cause erosion, damage, or a nuisance to off-site properties. There are no proposed point source discharges to areas other than surface waters associated with this project; therefore, erosion, damage, or nuisance is not anticipated to off-site properties.

APPENDIX A

SUPPORTING CALCULATIONS

SILT BARRIERS

Civil & Environmental Consultants, Inc.

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AA

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	22	SLOPE LENGTH =	37	100	100	63	63%	OK
SEGMENT B	SLOPE =	9	SLOPE LENGTH =	66	250	158	92	37%	OK
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	103
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AB

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	42	SLOPE LENGTH =	30	50	50	20	40%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	30
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AC

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	45	SLOPE LENGTH =	20	50	50	30	60%	OK
SEGMENT B	SLOPE =	17	SLOPE LENGTH =	56	150	90	34	23%	OK
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	76
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AD

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	5	SLOPE LENGTH =	50	350	350	300	86%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	50
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AE

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	36	SLOPE LENGTH =	38	55	55	17	31%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	38
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AF

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	22	SLOPE LENGTH =	37	100	100	63	63%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	37
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AG

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 28

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	28	SLOPE LENGTH =	118	125	125	7	6%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	118
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AI

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	27	SLOPE LENGTH =	50	75	75	25	33%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	50
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC
PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AH

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 21

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	35	SLOPE LENGTH =	68	90	90	22	24%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	68
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AJ

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 28

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	18	SLOPE LENGTH =	53	250	250	197	79%	OK
SEGMENT B	SLOPE =	15	SLOPE LENGTH =	55	350	276	221	63%	OK
SEGMENT C	SLOPE =	19	SLOPE LENGTH =	73	250	158	85	34%	OK
SEGMENT D	SLOPE =	20	SLOPE LENGTH =	53	250	85	32	13%	OK
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	234
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AK

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 28

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	18	SLOPE LENGTH =	53	250	250	197	79%	OK
SEGMENT B	SLOPE =	15	SLOPE LENGTH =	55	350	276	221	63%	OK
SEGMENT C	SLOPE =	19	SLOPE LENGTH =	73	250	158	85	34%	OK
SEGMENT D	SLOPE =	20	SLOPE LENGTH =	53	250	85	32	13%	OK
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	234
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	e & Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AL

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 21

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	20	SLOPE LENGTH =	156	200	200	44	22%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	156
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AM

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	9	SLOPE LENGTH =	81	250	250	169	68%	OK
SEGMENT B	SLOPE =	29	SLOPE LENGTH =	48	75	51	3	4%	OK
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	129
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AN

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	2	SLOPE LENGTH =	98	700	700	602	86%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	98
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AO

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	6	SLOPE LENGTH =	40	250	250	210	84%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	40
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AP

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	7	SLOPE LENGTH =	100	250	250	150	60%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	100
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AQ

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	5	SLOPE LENGTH =	285	350	350	65	19%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	285
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AR

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	3	SLOPE LENGTH =	95	350	350	255	73%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	95
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AS

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	3	SLOPE LENGTH =	122	350	350	228	65%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	122
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AT

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	14	SLOPE LENGTH =	43	200	200	157	79%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	43
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AU

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	18	SLOPE LENGTH =	143	150	150	7	5%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	143
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/4/2023	DATE:	12/7/2023

BARRIER AV

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	13	SLOPE LENGTH =	68	200	200	132	66%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	68
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	e & Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER AW

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	33	SLOPE LENGTH =	59	65	65	6	9%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	59
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER AX

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	50	SLOPE LENGTH =	27	40	40	13	33%	OK
SEGMENT B	SLOPE =	10	SLOPE LENGTH =	47	250	81	34	14%	OK
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	74
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER AY

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 28

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	50	SLOPE LENGTH =	39	60	60	21	35%	OK
SEGMENT B	SLOPE =	44	SLOPE LENGTH =	14	80	28	14	18%	OK
SEGMENT C	SLOPE =	11	SLOPE LENGTH =	31	350	61	30	9%	OK
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	84
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	e & Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER AZ

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 28

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	50	SLOPE LENGTH =	59	60	60	1	2%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	59
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BA

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	50	SLOPE LENGTH =	15	40	40	25	63%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	15
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BB

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	50	SLOPE LENGTH =	32	40	40	8	20%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	32
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BC

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	20	SLOPE LENGTH =	20	150	150	130	87%	OK
SEGMENT B	SLOPE =	50	SLOPE LENGTH =	8	40	35	27	67%	OK
SEGMENT C	SLOPE =	23	SLOPE LENGTH =	61	100	67	6	6%	OK
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	89
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BD

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	17	SLOPE LENGTH =	35	150	150	115	77%	OK
SEGMENT B	SLOPE =	23	SLOPE LENGTH =	51	100	77	26	26%	OK
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	86
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BE

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	25	SLOPE LENGTH =	39	100	100	61	61%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	39
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BF

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	21	SLOPE LENGTH =	98	100	100	2	2%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	98
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BG

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	20	SLOPE LENGTH =	65	150	150	85	57%	OK
SEGMENT B	SLOPE =	37	SLOPE LENGTH =	30	55	31	1	2%	OK
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	95
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BH

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	16	SLOPE LENGTH =	60	150	150	90	60%	OK
SEGMENT B	SLOPE =	24	SLOPE LENGTH =	45	100	60	15	15%	OK
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	105
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BI

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	17	SLOPE LENGTH =	77	150	150	73	49%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	77
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BJ

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	5	SLOPE LENGTH =	112	350	350	238	68%	OK
SEGMENT B	SLOPE =	9	SLOPE LENGTH =	87	250	170	83	33%	OK
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	199
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BK

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	5	SLOPE LENGTH =	81	350	350	269	77%	OK
SEGMENT B	SLOPE =	8	SLOPE LENGTH =	38	250	192	154	62%	OK
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	119
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BL

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	6	SLOPE LENGTH =	163	250	250	87	35%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	163
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	e & Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BM

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	7	SLOPE LENGTH =	117	250	250	133	53%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	117
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BN

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	17	SLOPE LENGTH =	50	150	150	100	67%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	50
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BO

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	23	SLOPE LENGTH =	65	100	100	35	35%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	65
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BP

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	34	SLOPE LENGTH =	52	65	65	13	20%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	52
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BQ

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	5	SLOPE LENGTH =	111	350	350	239	68%	OK
SEGMENT B	SLOPE =	16	SLOPE LENGTH =	68	150	102	34	23%	OK
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	179
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BR

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	18	SLOPE LENGTH =	21	150	150	129	86%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL		
FLOW LENGTH	21	
(FT)		

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC
PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BS

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	5	SLOPE LENGTH =	134	350	350	216	62%	OK
SEGMENT B	SLOPE =	8	SLOPE LENGTH =	94	250	154	60	24%	OK
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	228
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BT

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	7	SLOPE LENGTH =	116	250	250	134	54%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	116
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BU

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	4	SLOPE LENGTH =	106	350	350	244	70%	OK
SEGMENT B	SLOPE =	6	SLOPE LENGTH =	120	250	174	54	22%	OK
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	226
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	& Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BV

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	2	SLOPE LENGTH =	78	700	700	622	89%	OK
SEGMENT B	SLOPE =	3	SLOPE LENGTH =	105	350	311	206	59%	OK
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL	
FLOW LENGTH	183
(FT)	

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

PROJECT NAME:	MAM14_U1 Pipeline	e & Waterline	
PROJECT #:	332-793		
PREPARED BY:	LMK	CHECKED BY:	SCT
DATE:	12/6/2023	DATE:	12/7/2023

BARRIER BW

SILT FENCE OR COMPOST FILTER SOCK TYPE: SILTRON 16

SLOPE SEGMENT	ACTUAL SLOPE	%	ACTUAL FLOW LENGTH	FEET	MAXIMUM ALLOWABLE FLOW LENGTH* (FT)	ACTUAL ALLOWABLE FLOW LENGTH** (FT)	REMAINING LENGTH (FT)	PERCENT REMAINING	RESULT
SEGMENT A	SLOPE =	4	SLOPE LENGTH =	193	350	350	157	45%	OK
SEGMENT B	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT C	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT D	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT E	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT F	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT G	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT H	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT I	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT J	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT K	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT L	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-
SEGMENT M	SLOPE =	0	SLOPE LENGTH =	0	0	0	0	0%	-

TOTAL ACTUAL		
FLOW LENGTH	193	
(FT)		

*Filtrexx® SiltSoxx™ based on maximum slope lengths of Filtrexx® slope interruption based on a 1 in/24 hr rainfall event

provided in Filtrexx® Design Manual version 10.0

*Silt Fence from Chapter 6 Page 31 of the ODNR Rainwater and Land Development manual (Third Edition 2006)

*Super Silt Fence based on maximum slope lengths of 18 inch Filtrexx® SiltSoxx™

*Siltron® Advanced Silt Fence based on maximum slope lengths provided by MKB Company, LLC

TEMPORARY CHANNELS

Temporary Channel Flow Calculat	ions - 2-Year Design Storm	
Project:	MAM14 U1 Pipeline and Waterline	
CEC Project #: 332-793	332-793	
Prepared By:	SCT	Checked By:
Date:	12/7/2023	Date:

	PERMANENT CHANNEL CONDITION																						
Vegetated State																							
																	Mannir	ıg's 'n' ¹	Shear	Stress ⁵	Veloo	city ⁵	
													Normal			Bottom							
		Time of				Flow,				Left Side	Right Side	Channel	Depth		Normal Depth	Width to							
	Drainage Area	Concentration	Design	Intensity	Runoff	Q=CiA	Min.	Max.	Bottom	Slope, x	Slope, x	Depth	Minimum	Freeboard	Maximum Slope	Flow Depth	For use with	For use with	Calculated	Allowable	Calculated	Allowable	
Channel No.	(AC)	(min)	Storm	(in/hr)	Coefficient	(cfs)	Slope (%)	Slope (%)	Width (FT)	(X:1)	(X:1)	(FT)	Slope (FT)	(FT) ³	(FT)	Ratio ⁴	Min. Slope	Max. Slope	(PSF)	(PSF)	(FPS)	(FPS)	Channel Lining
Temporary Diversion Berm 1	1.61	10	2 Year	3.54	0.37	1.73	5.7	5.7	1.0	4.0	2.0	1.5	0.34	1.16	0.34	2.9	0.052	0.052	1.22	10.00	2.48	N/A ²	NAG \$200
Temporary Diversion Berm 2	1.41	10	2 Year	3.54	0.38	1.56	1.0	1.0	1.0	4.0	2.0	1.5	0.62	0.88	0.62	1.6	0.085	0.085	0.39	10.00	0.88	N/A ²	NAG \$200

¹ Manning's 'n' values obtained from the online North American Green Erosion Control Materials Design Software, Version 7.0.

² North American Green channel lining performance is evaluated soley on the basis of shear stress. Therefore, maximum allowable velocities are not applicable in the lined, unvegetated state or in any state for TRM liners.

³ Freeboard conservatively evaluated using normal depth minimum slope.

⁴ Channel bottom width to flow depth ratio conservatively evaluated using normal depth maximum slope.

⁵ Shear Stress and Velocity conservatively evaluated at maximum channel slope conditions.

ECMDS 7.0

North American Green 5401 St. Wendel-Cynthiana Rd. Poseyville, Indiana 47633 Tel. 800.772.2040 >Fax 812.867.0247 www.nagreen.com ECMDS v7.0

CHANNEL ANALYSIS

> > > <u>Temporary Diversion Berm 1</u>

NORTH AMERICAN GREEN

Name	Temporary Diversion Berm 1
Discharge	1.73
Channel Slope	0.057
Channel Bottom Width	1
Left Side Slope	4
Right Side Slope	2
Low Flow Liner	
Retardence Class	C 6-12 in
Vegetation Type	Mix (Sod and Bunch)
Vegetation Density	Good 65-79%
Soil Type	Silt Loam (SM)

S200

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
S200 Unvegetated	Straight	1.73 cfs	3.34 ft/s	0.28 ft	0.035	2.3 lbs/ft2	1 lbs/ft2	2.3	STABLE	E
Underlying Substrate	Straight	1.73 cfs	3.34 ft/s	0.28 ft	0.035	1.68 lbs/ft2	0.66 lbs/ft2	2.55	STABLE	E
S200 Reinforced Vegetation	Straight	1.73 cfs	2.48 ft/s	0.34 ft	0.052	10 lbs/ft2	1.22 lbs/ft2	8.21	STABLE	E
Underlying Substrate	Straight	1.73 cfs	2.48 ft/s	0.34 ft	0.052	4.41 lbs/ft2	0.78 lbs/ft2	5.67	STABLE	Е

ECMDS 7.0

North American Green 5401 St. Wendel-Cynthiana Rd. Poseyville, Indiana 47633 Tel. 800.772.2040 >Fax 812.867.0247 www.nagreen.com ECMDS v7.0

CHANNEL ANALYSIS

> > > <u>Temporary Diversion Berm 2</u>

NORTH AMERICAN GREEN

Name	Temporary Diversion Berm 2
Discharge	1.56
Channel Slope	0.01
Channel Bottom Width	1
Left Side Slope	4
Right Side Slope	2
Low Flow Liner	
Retardence Class	C 6-12 in
Vegetation Type	Mix (Sod and Bunch)
Vegetation Density	Good 65-79%
Soil Type	Silt Loam (SM)

S200

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
S200 Unvegetated	Straight	1.56 cfs	1.33 ft/s	0.48 ft	0.049	2.3 lbs/ft2	0.3 lbs/ft2	7.68	STABLE	E
Underlying Substrate	Straight	1.56 cfs	1.33 ft/s	0.48 ft	0.049	1.68 lbs/ft2	0.18 lbs/ft2	9.35	STABLE	E
S200 Reinforced Vegetation	Straight	1.56 cfs	0.88 ft/s	0.62 ft	0.085	10 lbs/ft2	0.39 lbs/ft2	25.85	STABLE	E
Underlying Substrate	Straight	1.56 cfs	0.88 ft/s	0.62 ft	0.085	10 lbs/ft2	0.22 lbs/ft2	44.68	STABLE	E

TEMPORARY CULVERTS

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Dec 7 2023

332-793 Temp Culvert 1

Invert E Pipe Le Slope (' Invert E Rise (in	Invert Elev Dn (ft)= 1142.00 Pipe Length (ft)= 88.00 Slope (%)= 2.27 Invert Elev Up (ft)= 1144.00 Rise (in)= 12.0 Shape= Circular									Calc Qmir Qma Tailv	a ulatio n (cfs) ax (cfs) vater E	ns Elev (ft)	= = =	1.74 1.74 (dc+D)/2
Shape Span (ii No. Bar n-Value Culvert Culvert Coeff. k	Kise (III) $-$ 12.0Shape= CircularSpan (in)= 12.0No. Barrels= 1n-Value= 0.012Culvert Type= Circular CulvertCulvert Type= Smooth tapered inlet threeCoeff. K,M,c,Y,k= 0.534, 0.555, 0.0196, 0.9Embankment				et throa 6, 0.9, (t 0.2	High Qtot Qpip Qove Velo Velo HGL HGL	hlighte al (cfs) ertop (c Dn (f c Up (f Dn (ft Up (ft	d cfs) ft/s) ft/s))		= 1.74 = 1.74 = 0.00 = 2.65 = 3.84 = 1142.78 = 1144.56					
Emban Top Ele Top Wie Crest W	kment evation (f dth (ft) /idth (ft)	t)	:	= 1146.00 Hw/D (ft) = 2.00 Flow Regime = 95.00					= 1144.83 = 0.83 = Inlet Cor							
Elev (ft	:)							Profile	e						Hw De	epth (ft)
1147.00 —																3.00
1146.00 —																2.00
1145.00 —						/	Er	nbankm	ent				7		Hw	- 1.00
1144.00 —				/	4	88	00 f c	of 12(in)	a 22	7 %				/		0.00
1143.00 —	HGL		F													-1.00
1142.00 —		/														-2.00
1141.00 — (0.0 10.	0 2	0.0	30.0	40.0	50	0.0 6	0.0 7	0.0	80.0	90.0	100.0	110.0) 12	0.0 13	-3.00

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Dec 7 2023

332-793 Temp Culvert 2

Invert Elev Dn (It)= 1099.00Pipe Length (ft)= 83.00Slope (%)= 21.69Invert Elev Up (ft)= 1117.00Rise (in)= 12.0Shape= CircularSpan (in)= 12.0No. Barrels= 1n-Value= 0.012Culvert Type= Circular CCulvert Entrance= Smooth taCoeff. K,M,c,Y,k= 0.534, 0.5					0 00 ar ar Culve h taper	ert ed inle	t throat		Calcul Qmin (Qmax (Tailwat Highlig Qtotal (Qpipe (Qoverta Veloc I Veloc I	ations cfs) (cfs) er Elev (cfs) (cfs) op (cfs) op (cfs) On (ft/s Jp (ft/s	/ (ft)))	= 1.71 = 1.71 = $(dc+D)/2$ = 1.71 = 1.71 = 0.00 = 2.61 = 3.82 = 1000.70				
Coeff. I Embar Top Ele Top Wi Crest V	Coeff. K,M,c,Y,k= $0.534, 0.555, 0.0196,$ EmbankmentTop Elevation (ft)= 1119.00 Top Width (ft)= 2.00 Crest Width (ft)= 95.00				s, 0.9, C).2	HGL D HGL U Hw Ele Hw/D (Flow R	= 1099.78 = 1117.56 = 1117.82 = 0.82 = Inlet Contro								
Elev (f	t)						Profile	•					Hw Del	oth (ft)		
1123.00 —														— 6.00		
1119.00 —											V	Hw		— 2.00		
1115.00 —						Emba	ankment							— -2.00		
1111.00 —														-6.00		
1107.00 —					83.0	0 Lf of 1	(in) @ 2	21.69 %	6					— -10.00		
1103.00 —														— -14.00		
1099.00 —	HGL													— -18.00		
1095.00 —	0.0 10	0.0 2	0.0 30	0.0 4	0.0 5	0.0 60	0.0 70).0 {	30.0 90	D.0 10	0.0 11	0.0 12	0.0 130	— -22.00 0.0		

Reach (ft)

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Dec 7 2023

332-793 Temp Culvert 3

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	$\begin{array}{c} = 1222.00 \\ = 75.00 \\ = 18.67 \\ = 1236.00 \\ = 12.0 \end{array}$	Calculations Qmin (cfs) Qmax (cfs) Γailwater Elev (ft)	= 4.04 = 4.04 = (dc+D)/2		
Shape Span (in) No. Barrels n-Value Culvert Type Culvert Entrance Coeff. K,M,c,Y,k	= Circular = 12.0 = 1 = 0.012 = Circular Culvert = Smooth tapered inlet throat = 0.534, 0.555, 0.0196, 0.9, 0.2	Highlighted Qtotal (cfs) Qpipe (cfs) Qovertop (cfs) Veloc Dn (ft/s) Veloc Up (ft/s) HGL Dn (ft) HGL Up (ft)	= 4.04 = 4.04 = 0.00 = 5.32 = 5.68 = 1222.93 = 1236.85		
Embankment Top Elevation (ft) Top Width (ft) Crest Width (ft)	EmbankmentHw Elev (ft)Top Elevation (ft)= 1237.50Hw/D (ft)Top Width (ft)= 2.00Flow RegimeCrest Width (ft)= 95.00Flow Regime				
Elev (ft)	Profile		Hw Depth (ft)		
1240.00			4.00		
1237.00			Hw 1.00		
1234.00	Empankment		-2.00		
1231.00	75 00 l f of 240 20 18 67	04	-5.00		
1228.00			-8.00		
1225.00			-11.00		
1222.00 HGL			-14.00		
1219.00			-17.00		

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0

TEMPORARY RIPRAP APRONS

Checked By:

Use R-4 Rip-Rap

Checked By:

Use R-4 Rip-Rap

Checked By:

Use R-4 Rip-Rap

APPENDIX B

SITE LOCATION MAP

Civil & Environmental Consultants, Inc.

APPENDIX C

USDA CUSTOM SOIL RESOURCE REPORT

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Westmoreland County, Pennsylvania

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Westmoreland County, Pennsylvania	14
BeD—Bethesda very channery silt loam, 8 to 25 percent slopes	14
BeF—Bethesda very channery silt loam, 25 to 75 percent slopes	15
CaB—Cavode silt loam, 3 to 8 percent slopes	17
ErB—Ernest silt loam, 3 to 8 percent slopes	18
ErC—Ernest silt loam, 8 to 15 percent slopes	20
GcB—Gilpin channery silt loam, 3 to 8 percent slopes	21
GcC—Gilpin channery silt loam, 8 to 15 percent slopes	23
GcD—Gilpin channery silt loam, 15 to 25 percent slopes	24
ItB—Itmann extremely channery loam, 0 to 8 percent slopes	25
Lo—Lobdell silt loam, 0 to 3 percent slopes, occasionally flooded	26
ShF—Shelocta-Gilpin channery silt loams, 25 to 75 percent slopes	28
SxF—Shelocta-Gilpin channery silt loams, 25 to 75 percent slopes,	
very stony	30
WrB—Wharton silt loam, 3 to 8 percent slopes	32
WrC—Wharton silt loam, 8 to 15 percent slopes	33
References	36

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND)	MAP INFORMATION		
Area of Interest (AOI)		Spoil Area	The soil surveys that comprise your AOI were mapped at			
	Area of Interest (AOI)	۵	Stony Spot	1:24,000.		
Soils	Call Man Linit Dalumana	0	Very Stony Spot	Warning: Soil Map may not be valid at this scale.		
		Ŷ	Wet Spot	······································		
~	Soil Map Unit Lines	Δ	Other	Enlargement of maps beyond the scale of mapping can cause		
	Soil Map Unit Points		Special Line Features	line placement. The maps do not show the small areas of		
Special Point Features		Water Features		contrasting soils that could have been shown at a more detailed scale		
	Borrow Pit	\sim	Streams and Canals			
لظ س	Clay Spot	Transport	ation	Please rely on the bar scale on each map sheet for map		
衆		+++	Rails	measurements.		
		~	Interstate Highways	Source of Map: Natural Resources Conservation Service		
X	Gravel Pit	~	US Routes	Web Soil Survey URL:		
0 0 0	Gravelly Spot	\sim	Major Roads	Coordinate System: Web Mercator (EPSG:3857)		
0	Landfill	\sim	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator		
Α.	Lava Flow	Backgrou	nd	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the		
علله	Marsh or swamp	and the second	Aerial Photography	Albers equal area conic projection, should be used if more		
~	Mine or Quarry			accurate calculations of distance or area are required.		
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as		
0	Perennial Water			of the version date(s) listed below.		
\vee	Rock Outcrop			Soil Survey Area: Westmoreland County, Pennsylvania		
+	Saline Spot			Survey Area Data: Version 20, Sep 7, 2023		
°.°	Sandy Spot			Soil map units are labeled (as space allows) for map scales		
0	Severely Eroded Spot			1:50,000 or larger.		
0	Sinkhole			Date(s) aerial images were photographed. Sep 11 2021—Nov		
≽	Slide or Slip			16, 2021		
ji	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.		

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
BeD	Bethesda very channery silt loam, 8 to 25 percent slopes	3.6	10.9%
BeF	Bethesda very channery silt loam, 25 to 75 percent slopes	2.1	6.4%
СаВ	Cavode silt loam, 3 to 8 percent slopes	0.0	0.0%
ErB	Ernest silt loam, 3 to 8 percent slopes	0.0	0.1%
ErC	Ernest silt loam, 8 to 15 percent slopes	2.1	6.4%
GcB	Gilpin channery silt loam, 3 to 8 percent slopes	7.6	23.1%
GcC	Gilpin channery silt loam, 8 to 15 percent slopes	0.9	2.6%
GcD	Gilpin channery silt loam, 15 to 25 percent slopes	3.3	10.0%
ltB	Itmann extremely channery loam, 0 to 8 percent slopes	0.3	0.8%
Lo	Lobdell silt loam, 0 to 3 percent slopes, occasionally flooded	0.4	1.1%
ShF	Shelocta-Gilpin channery silt loams, 25 to 75 percent slopes	5.4	16.4%
SxF	Shelocta-Gilpin channery silt loams, 25 to 75 percent slopes, very stony	0.8	2.4%
WrB	Wharton silt loam, 3 to 8 percent slopes	3.1	9.5%
WrC	Wharton silt loam, 8 to 15 percent slopes	3.3	10.2%
Totals for Area of Interest		32.8	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Westmoreland County, Pennsylvania

BeD—Bethesda very channery silt loam, 8 to 25 percent slopes

Map Unit Setting

National map unit symbol: 2w1w9 Elevation: 800 to 2,160 feet Mean annual precipitation: 39 to 53 inches Mean annual air temperature: 46 to 51 degrees F Frost-free period: 110 to 180 days Farmland classification: Not prime farmland

Map Unit Composition

Bethesda, unstable fill, and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Bethesda, Unstable Fill

Setting

Landform: Hillslopes Landform position (two-dimensional): Shoulder, backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Acid loamy coal extraction mine spoil derived from interbedded sedimentary rock

Typical profile

A - 0 to 6 inches: very channery silt loam *C - 6 to 80 inches:* very channery clay loam

Properties and qualities

Slope: 8 to 25 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: D Ecological site: F124XY100OH - Mine Spoil (reserved) Hydric soil rating: No

Minor Components

Bethesda, loam, unstable fill

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Backslope, shoulder Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear Across-slope shape: Linear Hydric soil rating: No

Fairpoint, unstable fill

Percent of map unit: 4 percent Landform: Hillslopes Landform position (two-dimensional): Backslope, shoulder Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear Across-slope shape: Convex, linear Other vegetative classification: Limy Hills (LH2), Unnamed (G126XYH-1OH) Hydric soil rating: No

Unnamed, hydric

Percent of map unit: 1 percent Landform: Hillslopes Landform position (two-dimensional): Backslope, shoulder Landform position (three-dimensional): Side slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

BeF—Bethesda very channery silt loam, 25 to 75 percent slopes

Map Unit Setting

National map unit symbol: 2wdqv Elevation: 670 to 2,310 feet Mean annual precipitation: 38 to 52 inches Mean annual air temperature: 48 to 51 degrees F Frost-free period: 110 to 170 days Farmland classification: Not prime farmland

Map Unit Composition

Bethesda, unstable fill, and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Bethesda, Unstable Fill

Setting

Landform: Hillslopes Landform position (two-dimensional): Backslope, shoulder Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex, linear Parent material: Acid loamy coal extraction mine spoil derived from interbedded sedimentary rock

Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material

- A 1 to 6 inches: very channery silt loam
- C 6 to 80 inches: very channery clay loam

Properties and qualities

Slope: 25 to 75 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: D Forage suitability group: Unnamed (G124XYH-1OH) Other vegetative classification: Unnamed (G124XYH-1OH) Hydric soil rating: No

Minor Components

Bethesda, loam, unstable fill

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Backslope, shoulder Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex, linear Hydric soil rating: No

Fairpoint, unstable fill

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Backslope, shoulder Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear Across-slope shape: Convex, linear Other vegetative classification: Limy Hills (LH2), Unnamed (G126XYH-1OH) Hydric soil rating: No

Rock outcrop

Percent of map unit: 0 percent

Water

Percent of map unit: 0 percent
CaB—Cavode silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2wdpc Elevation: 780 to 2,960 feet Mean annual precipitation: 38 to 58 inches Mean annual air temperature: 46 to 51 degrees F Frost-free period: 110 to 195 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Cavode and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Cavode

Setting

Landform: Ridges Landform position (two-dimensional): Summit, backslope Landform position (three-dimensional): Interfluve Down-slope shape: Concave, linear Across-slope shape: Concave, linear Parent material: Acid clayey residuum weathered from clayey shale

Typical profile

Ap - 0 to 10 inches: silt loam Btg - 10 to 47 inches: silty clay loam BCg - 47 to 57 inches: channery silt loam R - 57 to 67 inches: bedrock

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: 40 to 80 inches to lithic bedrock
Drainage class: Somewhat poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: High (about 9.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: C/D Ecological site: F124XY002OH - Acid Mixed Sedimentary Upland Hydric soil rating: No

Minor Components

Gilpin

Percent of map unit: 10 percent Landform: Ridges Landform position (two-dimensional): Shoulder, summit, backslope Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear, convex Hydric soil rating: No

Brinkerton

Percent of map unit: 5 percent Landform: Ridges Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Base slope, head slope Down-slope shape: Concave, linear Across-slope shape: Concave, linear Hydric soil rating: Yes

ErB—Ernest silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2t32b Elevation: 690 to 2,230 feet Mean annual precipitation: 37 to 55 inches Mean annual air temperature: 47 to 52 degrees F Frost-free period: 155 to 191 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Ernest and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Ernest

Setting

Landform: Hillslopes Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Base slope, head slope Down-slope shape: Concave, linear Across-slope shape: Concave Parent material: Fine-loamy colluvium derived from sedimentary rock

Typical profile

Ap - 0 to 8 inches: silt loam Bt1 - 8 to 15 inches: silt loam Bt2 - 15 to 24 inches: silt loam Btx1 - 24 to 36 inches: channery silt loam *Btx2 - 36 to 50 inches:* channery silt loam *C - 50 to 74 inches:* channery silt loam

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: 23 to 28 inches to fragipan
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.60 in/hr)
Depth to water table: About 15 to 22 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: C/D Ecological site: F124XY002OH - Acid Mixed Sedimentary Upland Hydric soil rating: No

Minor Components

Gilpin

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Linear, convex Hydric soil rating: No

Buchanan

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Base slope, head slope Down-slope shape: Concave, linear Across-slope shape: Concave Hydric soil rating: No

Brinkerton

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Base slope, head slope Down-slope shape: Concave Across-slope shape: Concave Other vegetative classification: Wetlands (W3) Hydric soil rating: Yes

ErC—Ernest silt loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2t32c Elevation: 590 to 2,290 feet Mean annual precipitation: 37 to 58 inches Mean annual air temperature: 47 to 53 degrees F Frost-free period: 155 to 203 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Ernest and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Ernest

Setting

Landform: Hillslopes Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Base slope, head slope Down-slope shape: Concave Across-slope shape: Concave, linear Parent material: Fine-loamy colluvium derived from sedimentary rock

Typical profile

Ap - 0 to 8 inches: silt loam Bt1 - 8 to 15 inches: silt loam Bt2 - 15 to 24 inches: silt loam Btx1 - 24 to 36 inches: channery silt loam Btx2 - 36 to 50 inches: channery silt loam C - 50 to 74 inches: channery silt loam

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: 23 to 28 inches to fragipan
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.60 in/hr)
Depth to water table: About 15 to 22 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C/D Ecological site: F126XY002OH - Footslope, F124XY002OH - Acid Mixed Sedimentary Upland *Forage suitability group:* Unnamed (G124XYF-3OH) *Other vegetative classification:* Unnamed (G124XYF-3OH) *Hydric soil rating:* No

Minor Components

Brinkerton

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Base slope, head slope Microfeatures of landform position: Closed depressions Down-slope shape: Concave Across-slope shape: Concave, linear Hydric soil rating: Yes

Buchanan

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Base slope, head slope Down-slope shape: Concave Across-slope shape: Concave, linear Hydric soil rating: No

Gilpin

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope, head slope Down-slope shape: Convex Across-slope shape: Linear, convex Hydric soil rating: No

GcB—Gilpin channery silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2t1kt Elevation: 870 to 2,720 feet Mean annual precipitation: 40 to 53 inches Mean annual air temperature: 47 to 52 degrees F Frost-free period: 167 to 179 days Farmland classification: All areas are prime farmland

Map Unit Composition

Gilpin and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Gilpin

Setting

Landform: Hills Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear, convex Parent material: Acid fine-loamy residuum weathered from shale and siltstone

Typical profile

Ap - 0 to 8 inches: channery silt loam
Bt - 8 to 24 inches: channery silt loam
C - 24 to 30 inches: extremely channery loam
R - 30 to 40 inches: bedrock

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: 30 to 36 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: C Ecological site: F126XY001OH - Dry Ridge Hydric soil rating: No

Minor Components

Wharton

Percent of map unit: 10 percent Landform: Hills Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Crest Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Weikert

Percent of map unit: 5 percent Landform: Ridges Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Nose slope Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

GcC—Gilpin channery silt loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2t1kw Elevation: 800 to 3,090 feet Mean annual precipitation: 40 to 62 inches Mean annual air temperature: 46 to 53 degrees F Frost-free period: 166 to 181 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Gilpin and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Gilpin

Setting

Landform: Hills Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear, convex Parent material: Acid fine-loamy residuum weathered from shale and siltstone

Typical profile

Ap - 0 to 8 inches: channery silt loam

Bt - 8 to 24 inches: channery silt loam

- C 24 to 30 inches: extremely channery loam
- R 30 to 40 inches: bedrock

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: 30 to 36 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C Ecological site: F126XY001OH - Dry Ridge Hydric soil rating: No

Minor Components

Wharton

Percent of map unit: 10 percent Landform: Hills Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex, linear Across-slope shape: Linear Hydric soil rating: No

Weikert

Percent of map unit: 5 percent Landform: Ridges Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Nose slope Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

GcD—Gilpin channery silt loam, 15 to 25 percent slopes

Map Unit Setting

National map unit symbol: 2t1kv Elevation: 790 to 3,120 feet Mean annual precipitation: 39 to 61 inches Mean annual air temperature: 46 to 53 degrees F Frost-free period: 161 to 181 days Farmland classification: Not prime farmland

Map Unit Composition

Gilpin and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Gilpin

Setting

Landform: Hills Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear, convex Parent material: Acid fine-loamy residuum weathered from shale and siltstone

Typical profile

Ap - 0 to 8 inches: channery silt loam

- Bt 8 to 24 inches: channery silt loam
- C 24 to 30 inches: extremely channery loam
- R 30 to 40 inches: bedrock

Properties and qualities

Slope: 15 to 25 percent
Depth to restrictive feature: 30 to 36 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: C Ecological site: F126XY004OH - Side Slope Hydric soil rating: No

Minor Components

Weikert

Percent of map unit: 10 percent Landform: Hillslopes Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Wharton

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Backslope, shoulder Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

ItB—Itmann extremely channery loam, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: mhs4 Elevation: 700 to 1,700 feet Mean annual precipitation: 36 to 46 inches Mean annual air temperature: 41 to 62 degrees F Frost-free period: 130 to 160 days Farmland classification: Not prime farmland

Map Unit Composition

Itmann, unstable fill, and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Itmann, Unstable Fill

Setting

Landform: Plateaus Down-slope shape: Convex, linear Across-slope shape: Convex, linear Parent material: Loamy coal extraction mine spoil derived from shale and siltstone

Typical profile

A - 0 to 14 inches: extremely channery loam C - 14 to 65 inches: extremely channery loam

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 5.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4s Hydrologic Soil Group: A Ecological site: F124XY100OH - Mine Spoil (reserved) Hydric soil rating: No

Lo—Lobdell silt loam, 0 to 3 percent slopes, occasionally flooded

Map Unit Setting

National map unit symbol: 2t326 Elevation: 520 to 1,430 feet Mean annual precipitation: 39 to 44 inches Mean annual air temperature: 49 to 53 degrees F Frost-free period: 167 to 191 days Farmland classification: All areas are prime farmland

Map Unit Composition

Lobdell and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Lobdell

Setting

Landform: Flood plains *Down-slope shape:* Linear

Across-slope shape: Linear Parent material: Fine-loamy alluvium derived from sedimentary rock

Typical profile

Ap - 0 to 6 inches: silt loam Bw1 - 6 to 20 inches: loam Bw2 - 20 to 38 inches: loam C - 38 to 65 inches: stratified loam to silt loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: About 16 to 30 inches
Frequency of flooding: Occasional
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very high (about 12.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: B/D Ecological site: F126XY006OH - Well Drained Floodplain Forage suitability group: Unnamed (G126XYA-5OH) Other vegetative classification: Unnamed (G126XYA-5OH) Hydric soil rating: No

Minor Components

Orrville

Percent of map unit: 5 percent Landform: Flood plains Down-slope shape: Linear Across-slope shape: Concave Hydric soil rating: No

Melvin

Percent of map unit: 5 percent Landform: Flood plains Down-slope shape: Concave, linear Across-slope shape: Concave, linear Hydric soil rating: Yes

Holly

Percent of map unit: 5 percent Landform: Flood plains Down-slope shape: Concave Across-slope shape: Concave Other vegetative classification: Wetlands (W3) Hydric soil rating: Yes

ShF—Shelocta-Gilpin channery silt loams, 25 to 75 percent slopes

Map Unit Setting

National map unit symbol: 18qt Elevation: 480 to 3,000 feet Mean annual precipitation: 30 to 65 inches Mean annual air temperature: 41 to 62 degrees F Frost-free period: 120 to 180 days Farmland classification: Not prime farmland

Map Unit Composition

Shelocta and similar soils: 50 percent Gilpin and similar soils: 40 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Shelocta

Setting

Landform: Hillslopes Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Concave Across-slope shape: Convex, linear Parent material: Acid fine-loamy colluvium derived from sandstone and siltstone

Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material *Oe - 1 to 2 inches:* moderately decomposed plant material *A - 2 to 8 inches:* channery silt loam *Bt1 - 8 to 14 inches:* channery silt loam *Bt2 - 14 to 40 inches:* channery silt loam *C - 40 to 80 inches:* very channery loam

Properties and qualities

Slope: 25 to 75 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 8.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B *Ecological site:* F126XY004OH - Side Slope, F124XY004OH - Acid Mixed Sedimentary Toeslope *Hydric soil rating:* No

Description of Gilpin

Setting

Landform: Hillslopes Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Acid fine-loamy residuum weathered from shale and siltstone

Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material

Oe - 1 to 2 inches: moderately decomposed plant material

A - 2 to 8 inches: channery silt loam

Bt - 8 to 24 inches: channery silt loam

- C 24 to 30 inches: very channery loam
- R 30 to 35 inches: bedrock

Properties and qualities

Slope: 25 to 75 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: C Ecological site: F126XY004OH - Side Slope, F124XY002OH - Acid Mixed Sedimentary Upland Hydric soil rating: No

Minor Components

Ernest

Percent of map unit: 8 percent Landform: Hillslopes Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: No

Rock outcrop

Percent of map unit: 2 percent

SxF—Shelocta-Gilpin channery silt loams, 25 to 75 percent slopes, very stony

Map Unit Setting

National map unit symbol: mhsb Elevation: 480 to 3,000 feet Mean annual precipitation: 30 to 65 inches Mean annual air temperature: 37 to 62 degrees F Frost-free period: 110 to 180 days Farmland classification: Not prime farmland

Map Unit Composition

Shelocta and similar soils: 50 percent Gilpin and similar soils: 35 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Shelocta

Setting

Landform: Hillslopes Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Concave Across-slope shape: Linear Parent material: Acid fine-loamy colluvium derived from sandstone and siltstone

Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material *Oe - 1 to 2 inches:* moderately decomposed plant material *A - 2 to 8 inches:* channery silt loam *Bt1 - 8 to 14 inches:* channery silt loam *Bt2 - 14 to 40 inches:* channery silt loam *C - 40 to 80 inches:* very channery loam

Properties and qualities

Slope: 25 to 75 percent
Surface area covered with cobbles, stones or boulders: 2.0 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 8.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: F127XY012WV - Convergent Uplands, F126XY004OH - Side Slope, F124XY004OH - Acid Mixed Sedimentary Toeslope Hydric soil rating: No

Description of Gilpin

Setting

Landform: Hillslopes Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Acid fine-loamy residuum weathered from shale and siltstone

Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material

Oe - 1 to 2 inches: moderately decomposed plant material

A - 2 to 8 inches: channery silt loam

Bt - 8 to 24 inches: channery silt loam

- C 24 to 30 inches: very channery loam
- R 30 to 35 inches: bedrock

Properties and qualities

Slope: 25 to 75 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: C Ecological site: F127XY013WV - Divergent Uplands, F126XY004OH - Side Slope, F124XY002OH - Acid Mixed Sedimentary Upland Hydric soil rating: No

Minor Components

Wharton

Percent of map unit: 10 percent Landform: Hillsides or mountainsides Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Ernest

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: No

WrB—Wharton silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2t185 Elevation: 760 to 2,860 feet Mean annual precipitation: 37 to 57 inches Mean annual air temperature: 46 to 53 degrees F Frost-free period: 158 to 205 days Farmland classification: All areas are prime farmland

Map Unit Composition

Wharton and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wharton

Setting

Landform: Hills Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Crest Down-slope shape: Convex Across-slope shape: Convex Parent material: Fine-loamy residuum weathered from shale and siltstone

Typical profile

Ap - 0 to 9 inches: silt loam Bt1 - 9 to 16 inches: silt loam Bt2 - 16 to 22 inches: silt loam Bt3 - 22 to 31 inches: silt loam BC - 31 to 46 inches: silty clay loam C - 46 to 69 inches: channery silty clay loam Cr - 69 to 79 inches: bedrock

Properties and qualities

Slope: 3 to 8 percent *Depth to restrictive feature:* 40 to 71 inches to paralithic bedrock *Drainage class:* Moderately well drained Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr) Depth to water table: About 16 to 28 inches Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: High (about 9.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: C/D Ecological site: F124XY002OH - Acid Mixed Sedimentary Upland Hydric soil rating: No

Minor Components

Cavode

Percent of map unit: 8 percent Landform: Hills Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Gilpin

Percent of map unit: 7 percent Landform: Ridges Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Convex Across-slope shape: Linear, convex Hydric soil rating: No

Brinkerton

Percent of map unit: 5 percent Landform: Depressions on hillslopes Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Base slope Down-slope shape: Linear, concave Across-slope shape: Linear, concave Hydric soil rating: Yes

WrC—Wharton silt loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2t5mm Elevation: 620 to 2,160 feet Mean annual precipitation: 37 to 51 inches Mean annual air temperature: 47 to 53 degrees F Frost-free period: 161 to 205 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Wharton and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Wharton

Setting

Landform: Hills Landform position (two-dimensional): Backslope, shoulder Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Linear Parent material: Fine-loamy residuum weathered from shale and siltstone

Typical profile

Ap - 0 to 9 inches: silt loam Bt1 - 9 to 16 inches: silt loam Bt2 - 16 to 22 inches: silt loam Bt3 - 22 to 31 inches: silt loam BC - 31 to 46 inches: silty clay loam C - 46 to 69 inches: channery silty clay loam Cr - 69 to 79 inches: bedrock

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: 40 to 71 inches to paralithic bedrock
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: About 16 to 28 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: High (about 9.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C/D Ecological site: F126XY003OH - Moist Ridge Forage suitability group: Unnamed (G126XYA-6OH) Other vegetative classification: Unnamed (G126XYA-6OH) Hydric soil rating: No

Minor Components

Gilpin

Percent of map unit: 10 percent Landform: Hillslopes Landform position (two-dimensional): Backslope, shoulder Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Linear, convex Hydric soil rating: No

Rarden

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Ernest

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

14.0 REFERENCES

- 1. Commonwealth of Pennsylvania, Pennsylvania Code Title 25, Environmental Resources, Department of Environmental Protection, <u>Chapter 93 Water Quality Standards</u>, Harrisburg, PA 1994.
- 2. Commonwealth of Pennsylvania, Department of Environmental Protection, Office of Water Management, <u>Erosion and Sediment Pollution Control Program Manual</u>, Harrisburg, PA, March 2012.
- 3. U.S. Department of Agriculture, National Resources Conservation Service, Custom Soil Resource Report for Westmoreland County, Pennsylvania, prepared in December 2023 on the Web Soil Survey website. <u>http://websoilsurvey.nrcs.usda.gov</u>
- 4. Pomeroy, J. S., 1979, Landslides and related features, Vandergrift, Pennsylvania: U.S. Geological Survey Open-File Map 79–1314, E-4 Via: "PA DCNR Geology Landslides Publications." *PA DCNR Geology Landslides Publications*. N.p., n.d. Web. November 2023.
- 5. "Pennsylvania Department of Environmental Protection eMapPA." *eMapPA*. N.p., n.d. Web. November 2023.